Главная » Статьи » Химия » Атомы |
Атомы состоят из еще более мелких частиц, которые были открыты в разное время разными исследователями. Самой первой из таких частиц оказался электрон, несущий единичный электрический заряд. Электрон получил свое нынешнее название только в самом конце прошлого века, а до этого физики только предполагали, что существует некий "атом электричества", с помощью которого по проводам передается электрический ток. В 1853 году французский исследователь А. Массон решил попробовать пропускать электрические разряды (искры) через стеклянную трубку, из которой откачан воздух. Впоследствии с помощью этого несложного устройства англичанин Вильям Крукс провел множество опытов, и с тех пор такие трубки называют круксовыми (их прямые "потомки" - редко встречающиеся теперь электронно-лучевые телевизоры и мониторы).
Рис. 2-1. Вращение вертушки с лопастями под действием катодных лучей в трубке Крукса.
Этот опыт позволял предположить, что катодные лучи больше похожи не на обычный свет, а на поток микроскопических частиц, имеющих массу. Что же удалось выяснить с помощью круксовых трубок? Они служили источником необычных лучей, которые распространялись отрицательно заряженным электродом - катодом. Эти лучи получили название катодных. Описывая катодные лучи, Крукс отмечал такие их свойства: - они вызывают свечение некоторых веществ, нанесенных на внутреннюю поверхность трубки; - они обладают кинетической энергией и способны передавать механическое движение вертушке с лопастями (рис. 2-1); - они отклоняются магнитным полем; - они отрицательно заряжены, потому что движутся по направлению к положительному полюсу трубки. В 1897 году английский физик Дж. Дж. Томсон сконструировал похожую трубку, с помощью которой можно было измерять отклонение катодных лучей в электрическом поле (рис.2-2). Напряжение, подаваемое на пластины 4 и 5, между которыми проходили катодные лучи, можно было уменьшать или увеличивать. Чем выше было напряжение на пластинах 4 и 5, тем сильнее отклонялся от прямолинейной траектории поток катодных лучей. Рис. 2-2. Прибор Томсона для измерения отклонения катодных лучей под действием электрического поля. 1 - отрицательно заряженный электрод (катод), 2 - положительно заряженный электрод, 3 - отверстие, 4 и 5 - пластины электродов для отклонения катодных лучей, 6 - часть трубки, покрытая изнутри слоем вещества, светящимся под действием катодных лучей, 7 - светящееся пятно. Впоследствии этот эксперимент помог установить массу и заряд частиц, из которых состоят катодные лучи: ведь чем меньше масса и чем больше заряд частицы, тем легче отклонить ее от прямолинейной траектории с помощью электрического поля. Правда, для этого потребовались дополнительные эксперименты, но в 1909 году цель была достигнута. Электрический заряд таинственных "катодных" частиц, выраженный в кулонах, оказался величиной чрезвычайно малой, поэтому для удобства физики и химики чаще пользуются другой шкалой, в которой величина этого "элементарного" заряда принята за единицу. Описанные Томсоном отрицательно заряженные частицы, несущие наименьший электрический заряд, получили название электронов. Позже в аналогичном приборе удалось наблюдать поток положительно заряженных частиц, которые стали называть протонами. Масса протона оказалась почти в 2000 раз больше массы электрона, а его заряд, как выяснилось, равен заряду электрона, но со знаком "плюс". Таким образом, в распоряжении физиков появились первые "строительные детали", с помощью которых уже можно было попытаться построить те или иные модели атомов. Томсон предположил, что атомы состоят из положительно заряженной сферы, в которую вкраплены электроны (рис. 2-3а). Эта модель атома получила среди ученых прозвище "сливовый пудинг", хотя не менее похожа и на булочку с изюмом (где "изюминки" - это электроны), или на "арбуз" с "семечками" - электронами.
Рис. 2-3. Модели атома: а) Томсона (“сливовый пудинг”), б) Резерфорда, в) планетарная модель Бора.
В 1910 году английский физик Эрнст Резерфорд со своими учениками Гейгером и Марсденом провели эксперимент, который дал поразительные результаты, необъяснимые с точки зрения модели Томсона. В то время уже была открыта радиоактивность, о которой в наше время знают даже школьники начальных классов. Радиоактивные вещества способны испускать не только лучи высокой энергии, но и частицы высокой энергии, которые способны проникать сквозь многие предметы. Такие частицы называются альфа-частицами. Рис. 2-4. Опыт Э.Резерфорда. Поток альфа-частиц проникает сквозь тонкую золотую фольгу толщиной приблизительно 10000 атомов. Пройдя сквозь золото, альфа-частицы вызывают вспышку при ударе об экран. По вспышкам на экране можно видеть отклонения части альфа-частиц от прямолинейной траектории.
В опыте Резерфорда поток альфа-частиц направлялся на тонкую золотую фольгу, а затем становился видимым на специальном экране со светящимся покрытием (рис 2-4). Обнаружилось, что не все альфа-частицы проходят фольгу насквозь по прямой траектории. Некоторая их часть заметно отклонялась в сторону и даже отражалась от тонкого листа золотой фольги, как снаряд от брони! Это могло означать только одно: атомы золота не сплошные, а состоят из "разреженных" пустот (сквозь которые альфа-частицы проходят беспрепятственно) и очень плотных областей, от которых альфа-частицы отскакивают, как мячик. Резерфорд предположил, что атом золота состоит из плотного, положительно заряженного ядра, в котором сосредоточена практически вся масса атома, и окружающих это ядро электронов (рис. 2-3б). Электроны вращаются вокруг ядра, образуя разреженный "электронный рой". Альфа-частицы относительно легко проходят сквозь разреженную область, занимаемую электронами и отражаются (или отклоняются в сторону) при столкновении с плотным ядром атома. По соотношению отклоненных и не отклоненных альфа-частиц удалось рассчитать, что размеры ядра атома золота примерно в 100000 раз меньше внешних границ атома, которыми он соприкасается с другими атомами! Модель Резерфорда объясняла результаты эксперимента с альфа-частицами, но задавала физикам и химикам еще больше вопросов, чем было раньше. Почему при движении заряженного электрона около заряженного ядра не выделяется энергия? Как атомы "прикрепляются" друг к другу? Почему электроны не падают на ядро? Каким образом физические тела, состоящие из атомов, при нагревании испускают свет? Эти вопросы частично прояснились только после того, как датский физик Н.Бор предложил модель атома, похожую на модель Резерфорда, но с тем отличием, что электроны располагались вокруг ядра на строго определенных, постоянных орбитах (рис. 2-3). Эта модель напоминает устройство солнечной системы, где электроны вращаются вокруг ядра так же, как планеты вокруг Солнца. Когда вещество нагревают, электроны поглощают энергию и переходят на более удаленные от ядра постоянные орбиты, а затем возвращаются на прежнее место, выделяя энергию строго отмеренными "порциями" (в виде света). Такая “порция” энергии (ее называют квантом света) в точности равна разнице между энергиями электрона на более высокой и менее высокой орбитах. Изучая испускаемый нагретыми телами свет, можно выяснить, сколько постоянных электронных орбит существует в атоме и даже установить довольно сложное внутреннее устройство этих орбит (о том, как это было сделано, более подробно рассказывается в параграфе 2.7). Результаты огромного числа экспериментов и усилия физиков-теоретиков позволили получить довольно подробную информацию об атомах. О том, какая картина внутреннего устройства атома открылась исследователям, рассказывается в следующих параграфах этой главы. | |
Просмотров: 1125 | | |
Всего комментариев: 0 | |